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Review Paper
Insights Into Gene Therapy Innovations for 
Orthopedic Disorders: A Mini-review

A thorough review of the available scientific works related to the use of gene therapy to address 
orthopedic disorders was performed. This review highlights the considerable promise of gene 
therapy in transforming clinical practice in this domain. Orthopedic conditions, including 
a range of problems, such as spinal fusion failure, disc degeneration, fractures, segmental 
bone defects, bone tumors, joint disorders, soft-tissue injuries, genetic disorders, and nerve 
and muscle disorders, often pose significant challenges for traditional surgical or medical 
treatments. Consequently, a concerted effort has been made to explore gene therapy as a viable 
alternative. This innovative approach has made significant progress, although several hurdles 
must be addressed before widespread clinical application in humans. However, gene therapy has 
considerable potential as a promising treatment option for orthopedic disorders in the 21st century. 
As gene transfer techniques continue to advance, the potential applications of gene therapy for 
orthopedic disorders are expected to expand significantly.
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Introduction

enes act as fundamental building blocks 
of heredity, governing individuals’ phys-
ical traits and functional characteristics. 
At birth, individuals inherit a predeter-
mined genetic blueprint, which, when 

coupled with environmental influences, dictates suscep-
tibility to various disease conditions. Gene therapy has 
emerged as a strategy for correcting aberrant genes asso-
ciated with disease development, involving the transfer 
and activation of genes within individuals for therapeutic 
purposes [1, 2]. Gene therapy consists of the delivery of 
genes to individuals with a therapeutic aim. Human gene 
transfer can be achieved through ex vivo and in vivo 
approaches. Ex vivo gene therapy involves the transfer 
of genes into cells outside the body, typically in a tissue 
culture environment. Subsequently, genetically modi-
fied cells are reintroduced into the host organism. In 
contrast, the in vivo approach entails the direct transfer 
of genes into specific somatic cells of the host organ-
ism in its native environment [3]. Ex vivo techniques are 
notably more intricate but offer relatively higher safety 
profiles. Additionally, the ex vivo approach provides an 
opportunity to select cells expressing the desired genes 
at elevated levels in vitro. In contrast, in vivo gene deliv-
ery techniques are more straightforward from a technical 
standpoint and are currently more widely employed. The 
application of gene therapy to germline cells, initially 
envisioned as a remedy for hereditary genetic condi-
tions, raises ethical dilemmas owing to the far-reaching 
implications of modifications, impacting all future gen-
erations and potentially evoking concerns related to 
eugenics. As a result, while experimental somatic cell 
gene therapy represents a relatively emerging domain, 
substantial advancements have been made in the last 
decade. The widespread recognition of the potential of 
gene therapy to transform medical practices in the 21st 
century is evident [4]. This review underscores this in-
novative approach’s utilization and prospective benefits 
in tackling orthopedic disorders.

Strategies for Gene Therapy

Gene therapy can be categorized into two main branch-
es: Somatic cells and germline cells. It is crucial to high-
light that all clinical trials conducted thus far exclusively 
examined somatic cell gene therapy [5, 6]. In somatic 
gene therapy, a plethora of tissues are available for con-
sideration. Additionally, once the target tissue is identi-
fied, selecting the target cell in that tissue presents a con-
siderable challenge, often surpassing the complexity of 

choosing the target tissue itself. The decision regarding 
which cell to target frequently depends on the method 
employed for vector delivery [7]. In gene therapy, the 
synthesis of a functional protein involves several se-
quential processes. First, exogenous complementary 
DNA (cDNA) must traverse the cell membrane, evade 
degradation within the lysosomes, and subsequently ac-
cess the nucleus for transcription. After transcription, the 
resulting messenger ribonucleic acid (mRNA) is trans-
lated into amino acids, culminating in the production of 
the intended peptide or protein [8]. Gene therapy holds 
promise for delivering growth factors in a biologically 
active manner because the protein is synthesized en-
dogenously in the body. This can result in more accu-
rate post-translational modifications and the formation 
of tertiary structures with ligands that are more readily 
recognizable, thereby augmenting their ability to bind to 
cell surface receptors compared with recombinant pro-
teins [9, 10]. 

Gene Delivery Vectors

For gene expression to occur, the transferred DNA 
must successfully enter the host cell’s nucleus, where it 
can integrate into the host cell’s chromosomes or remain 
in episomes. Introduction is the process of gene transfer 
using a viral vector. Viral vectors employed in human 
clinical trials include retroviruses, adenoviruses, adeno-
associated viruses, lentiviruses, and HSVs [11, 12]. The 
Moloney murine leukemia retrovirus is one of the most 
well-established viral vectors used in gene therapy. The 
essential attributes of any viral vector pertinent to gene 
therapy include simplicity, cost-effectiveness of produc-
tion, potential for evoking immune responses, integra-
tion into the host genome, titer, and safety profile [13]. 
The specific advantages and limitations of each available 
viral vector system have been comprehensively exam-
ined in the literature [14].

Viral Vectors 

Vectors derived from retroviruses

Retroviruses are RNA viruses that replicate via an in-
termediate step involving DNA [3]. The primary advan-
tage of retroviral vectors is their exceptional efficiency in 
transferring genes into actively dividing cells. This level 
of accuracy and durability of gene transfer is unmatched 
by other types of viruses [15]. Retroviral vectors have 
a substantial cloning capacity, accommodating up to 8 
kilobases (kb) of genetic material, and can be manufac-
tured in significant quantities with relative ease for clini-
cal applications. However, their utility is constrained by 

G

Nakhaei Amroodi M, et al. Exploring the Role of Wnt Signaling Pathway in Orthopedic Health and Disease: Mini-review. J. Res Orthop Sci. 2023; 10(2):53-66.



55

 May 2023. Volume 10. Number 2

factors such as a limited host range, inadequate transduc-
tion of non-dividing cells, and potential risk of insertion-
al events that trigger tumorigenesis [16]. These delivery 
systems can transduce osteoblasts, bone marrow stromal 
cells, and muscle-derived stem cells, positioning them as 
promising candidates for skeletal gene therapy [17-19]. 
Investigators found that periosteal mesenchymal stem 
cells, engineered to express bone morphogenetic protein 
(BMP)-7 via retroviral vector manipulation, markedly 
improve the healing process of critical-sized defects. Re-
searchers in a mouse calvarial model noted synergistic 
advantages in bone regeneration by co-implanting mus-
cle-derived stem cells, genetically modified ex vivo us-
ing retroviral vectors to produce BMP-2/4 and vascular 
endothelial growth factor (VEGF) [20, 21].

Vectors derived from adenovirus 

Adenoviruses, DNA viruses featuring a double-strand-
ed genome approximately 35 kb in length, have been 
extensively evaluated in both preclinical and clinical tri-
als for gene therapy applications [22]. These vectors can 
accommodate approximately eight kb of genetic mate-
rial within an expression cassette. However, newer “gut-
less” adenoviral vectors can accommodate significantly 
larger DNA sequences [23]. Adenovirus vectors exhibit 
remarkable efficiency, facilitating their production in 
significant quantities and resulting in elevated levels of 
expression following transduction. Furthermore, they 
demonstrate the capacity to transfer genes to replicating 
and non-replicating cells [3]. The primary hurdle asso-
ciated with using adenoviruses in gene therapy pertains 
to the immune response elicited by the host, which re-
stricts transgene expression in animals with intact im-
mune systems [10]. Adenoviral vectors expressing lacZ 
and transforming growth factor β1 (TGF-β1) efficiently 
transduced osteoblasts and osteoclasts, resulting in no-
table alterations within the epiphyseal plate [24, 25].

Vectors derived from herpes simplex virus (HSV)

HSV vector, known for its remarkable DNA virus and 
infectivity, remains latent in nerve cells. However, its 
extensive genome and cytotoxic properties make it less 
favorable for consideration as a vector [26]. Research-
ers have recently employed a second-generation, low-
toxicity HSV vector to deliver an interleukin-1 receptor 
antagonist (IL-1Ra) gene and a soluble tumor necrosis 
factor-α (TNF-α) receptor gene. This approach signifi-
cantly reduced arthritis symptoms, primarily through IL-
1Ra [27].

Vectors derived from lentiviral 

For the most part, lentiviral vectors are derived from 
human immunodeficiency virus (HIV). Consequently, 
prioritizing safety is crucial when employing this gene 
delivery platform. Lentiviral vectors engineered from 
HIV demonstrate efficient transduction of human mac-
rophages and primary tissues, such as the brain and 
muscle [28, 29]. Despite persistent safety concerns, the 
capacity of lentiviral vectors to infect non-dividing os-
teogenic cells, their compatibility with osteoblast-spe-
cific promoters, and their reduced propensity to induce 
gene silencing or activate host cell genes strongly indi-
cate that these vectors exert a significant influence on 
future skeletal gene therapy strategies.

Vectors derived from adeno-associated virus 

Recently, recombinant adeno-associated viral (AAV) 
vectors have emerged as promising substitutes for ad-
enoviral and retroviral vectors for gene therapy. AAV 
vectors demonstrate non-cytotoxic properties, excep-
tional safety profiles, and the ability to deliver genes to 
non-dividing cells. They can be integrated explicitly into 
the 19th chromosome, ensuring targeted gene insertion. 
Furthermore, they enable prolonged and consistent gene 
expression and can be produced at high titers, facilitat-
ing their application using in vivo methods [1]. The re-
searchers utilized AAV vectors to deliver marker genes 
to the arthritic knees of mice overexpressing TNF-α us-
ing in vivo techniques. AAV has demonstrated effective-
ness as a vector and is expected to be applied in a broader 
spectrum of clinical treatments [30].

Vectors derived from non-viral 

There has been a push for developing non-viral deliv-
ery systems owing to concerns regarding safety, immu-
nogenicity, and production limitations associated with 
viral vectors. These systems involve a combination of 
genes (DNA) and various chemical formulations. The 
technique referred to as transfection illustrates a form 
of gene transfer that does not include viruses. Non-viral 
delivery systems encompass a diverse range of materi-
als, such as plasmids, peptides, positively charged lipo-
somes, DNA complexes with ligands targeting particular 
cell receptors to enhance cellular uptake, and Gene-gun 
technology, which employs gold-coated particles loaded 
with DNA and introducing them into cells through high-
speed bombardment [31-33]. However, their effective-
ness typically falls short of that of viral vectors. Non-viral 
delivery systems demonstrate lower efficiency than viral 
techniques because no intrinsic biological mechanism 
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is found to integrate the desired DNA material into the 
genome. These approaches can be classified as physical, 
mechanical, or chemical approaches. The researchers in-
jected plasmid DNA encoding TGF-α1 directly into the 
muscles of mice with streptococcal cell wall-induced ar-
thritis. They observed substantial suppression of chronic 
diseases, which was marked by reduced inflammation at 
the peak of the acute phase. Additionally, cartilage, bone 
damage, and pannus formation decrease is observed dur-
ing the chronic phase [34].

Clinical Applications

Cartilage repair 

Impairment of adult articular cartilage frequently re-
sults in early-onset arthritis, mainly due to the tissue’s 
limited regenerative ability. This limitation can be attrib-
uted to insufficient availability of stem cells, inadequate 
vascularization, and low cellular turnover [35]. Numer-
ous methods have been devised to enhance the healing of 
articular cartilage [36, 37]. Mason et al. used a retroviral 
vector to genetically modify mesenchymal stem cells by 
introducing a BMP-7 gene. These modified cells were 
transplanted onto a polyglycolic acid scaffold to a rabbit 
osteochondral defect [38, 39]. They demonstrated sig-
nificantly improved healing of the articular defect com-
pared to control groups at both 8 and 12 weeks post-im-
plantation. More recently, researchers have investigated 
the effects of in vitro gene transfer of insulin-like growth 
factor-1 (IGF-1), BMP-2, and TGF-β to rabbit articular 
chondrocytes [39]. Studies indicate that BMP-7 also 
stimulates the chondrogenic differentiation of precursor 
cells derived from the periosteum. Research has shown 
that incorporating periosteal cells genetically modified 
to express BMP-7 or sonic hedgehog cDNAs improves 
the healing of osteochondral defects in rabbits [40]. 
Given their limited intrinsic capacity for cartilage repair 
and remodeling, gene therapy cells have often been inte-
grated with diverse scaffolds to replicate the architecture 
of cartilage tissues. This approach has shown promising 
results in cartilage repair in rabbits, mainly using peri-
osteal mesenchymal stem cells transfected with BMP-7 
and sonic hedgehog genes [41].

Meniscus 

Various methods, such as sutures, arrows, and staples, 
have been devised to conserve the menisci. Nonetheless, 
tears located solely in the vascularized outer third of the 
meniscus exhibit healing potential [42]. Precondition-
ing meniscus allografts using viral vectors expressing 
growth factors holds promise for expediting graft heal-

ing and restructuring while mitigating immunogenic 
responses. The rationale for employing gene-based ap-
proaches to preserve and repair the articular cartilage 
can be extended to the meniscus. Meniscal cells are re-
sponsive to adenoviral and retroviral transduction. Spe-
cifically, the delivery of TGF-β1 cDNA into these cells 
in monolayer culture resulted in a significant increase in 
proteoglycan and collagen production, with no changes 
detected in the cells’ collagen phenotype [43-47].

Osteoporosis

Osteoporosis leads to reduced bone density and osteo-
penia [48]. Osteoporosis manifests as two distinct types. 
Type 1 osteoporosis is characterized by escalated osteo-
clastogenesis stemming from estrogen depletion, where-
as type 2 is characterized by diminished osteogenesis 
originating from aging marrow stem cells. Gene therapy 
for type 2 osteoporosis can be implemented using ex vivo 
methods involving the transduction of marrow stem cells 
from osteoporotic donors with adenoviral vectors encod-
ing the BMP-2 gene. This potent growth factor promotes 
bone formation. Studies have shown that genetically en-
gineered cells significantly enhance osteogenic activity 
in vivo [49]. Systemic intravenous delivery of adeno-
viral or AAV vectors containing osteoprotegerin (OPG) 
cDNA results in elevated levels of OPG in circulation, 
thereby eliciting a sustained anti-osteoporotic effect in 
mice [50, 51].

Osteopetrosis 

Osteopetrosis, a genetic disorder characterized by ex-
cessive bone formation and bone marrow obliteration, 
presents an opposite phenotype to osteoporosis. Surplus 
bone formation in osteopetrosis is caused by decreased 
osteoclastogenesis, which is associated with genetic 
abnormalities affecting the colony-stimulating factor 1 
(CSF-1) gene. Gene therapy offers potential by intro-
ducing marrow stem cells modified to overexpress the 
CSF-1 gene, thereby stimulating heightened osteoclas-
togenesis [52-54].

Spinal fusion

Spinal fusion is a common procedure in spinal surgery, 
frequently requiring internal fixation devices for tempo-
rary stabilization. However, achieving enduring stabil-
ity requires a successful bone fusion. Nonetheless, the 
failure rate to achieve robust bone fusion can reach 45%. 
Although autogenous bone grafts are efficacious, they 
are constrained in volume and can induce considerable 
morbidity at the donor site. Research indicated that the 
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morbidity rate associated with harvesting autogenous 
iliac crest bone grafts may reach 30%. Allograft bone 
carries risks of antigenicity and disease transmission. 
Additionally, alloplastic materials are associated with 
higher infection rate and extrusion and inferior biome-
chanical properties [55]. Extensive animal studies have 
demonstrated the exceptional effectiveness of BMPs in 
enhancing bone formation at fusion sites, offering strong 
support for advancing BMP gene therapy to clinical 
applications. Unlike systemic gene therapy, local gene 
therapy for spinal fusion is less complex because it re-
quires sustained gene expression for only a brief period, 
potentially less than a week, to trigger the endochondral 
osteoinduction cascade. Although several hurdles must 
be overcome before this innovative approach can be 
clinically deployed, local gene therapy shows promise as 
a more favorable method of osteoinduction than the ad-
ministration of pharmacological doses of recombinant or 
extracted osteoinductive proteins in spinal surgery. With 
further refinement, BMP gene therapy stands poised to 
facilitate bony union across various spinal regions, in-
cluding transverse processes, facets, laminae, and spi-
nous processes, in a minimally invasive manner, offering 
numerous applications in spine surgery [56]. 

Genes related to gene therapy in spinal fusion are pre-
sented in Table 1.

Degeneration of the intervertebral disc

Disc degeneration and related spinal disorders are 
a significant cause of morbidity, leading to consider-
able pain and heightened healthcare expenses. Despite 

extensive clinical research focused on intervertebral 
discs, current surgical interventions or pharmaceutical 
treatments do not address the underlying pathology of 
intervertebral disc degeneration. This degeneration is 
characterized by weakened or ruptured collagen and 
proteoglycan structures, reducing water content, and 
decreased flexibility. Although protein-based agents 
show promising therapeutic potential with precise tar-
geting, they often face challenges reaching spinal com-
partments (Table 2) [62, 63]. 

Bone regeneration

Fracture healing in humans commonly exhibits resil-
ience, requiring only stabilization of the injured area and 
pain management as medical measures. However, inad-
equate fracture healing is associated with chronic pain 
and prolonged mobility limitations, often necessitating 
surgical intervention. External fixation devices can sta-
bilize fractures prone to inadequate healing; however, 
insufficient bone at the defect site may lead to structural 
instability and, in some cases, infection and bone ero-
sion. Although bone grafts are another option, they carry 
the risk of infection and may not provide sufficient bone 
for specific applications, making contouring difficult. 
Microsurgical transfer of free bone grafts, including at-
tached soft tissue and blood vessels, can help reduce the 
risk of infection; however, it is a complex and special-
ized procedure with an elevated risk of complications. 
As a result, modern orthopedic practice often lacks an 
effective treatment for fractures prone to poor healing 
tendencies (Table 3) [66-68]. 

Table 1. Genes related to gene therapy in spinal fusion

Gene Effect Vector Type Ref

BMP-2 Stimulating the generation of fresh bone tissue and effectively facilitating spinal fusion Adenoviral [57, 58]

BMP-7 Stimulating the generation of fresh bone tissue and effectively facilitating spinal fusion Adenoviral [57, 58]

LMP-1 Promoting the production of a secreted osteoinductive protein capable of influencing neighboring cells 
to stimulate bone formation Adenoviral [59, 60]

BMP-9 Promoting spinal fusion Adenoviral [61]

Table 2. Genes related to gene therapy in intervertebral disc degeneration

Gene Effect Vector Type Ref

TGF-α Induction of ECM production Adenoviral [64]

IL-1Ra Induction of ECM production Adenoviral [65]

ECM: Extracellular matrix.
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Arthritis 

Gene therapy has emerged as a prospective tactic for 
providing continuous therapeutic concentrations of anti-
arthritic gene products to afflicted joints. Viral and non-
viral vectors can be used to convey these genes directly 
into the body (in vivo) or to cells outside the body before 
re-implantation (ex vivo). Encouraging preclinical out-
comes have been attained through implementing these 
methodologies in diverse animal models of arthritis. Ad-
vancements in crafting gene therapies for arthritis have 
been swift, instilling confidence to enhance the manage-
ment of this category of ailments (Table 4) [77, 78].

Soft-tissue healing 

Injuries to musculoskeletal tissues, such as ligaments 
and tendons, are prevalent; however, these tissues do not 
always undergo optimal healing. In healthy individuals, 
wound healing and tissue repair typically involve mul-
tiple stages. Following birth, this process commences 
with an inflammatory response, upon which subsequent 

stages are predicted. While wound healing normally re-
stores the injured site, it does not achieve tissue regen-
eration, which is particularly relevant for mechanically 
active tissues, such as ligaments and tendons. The com-
plex interplay between mechanical forces and biological 
processes significantly influences the healing process’s 
effectiveness. Moreover, host biology is affected by fac-
tors such as age, sex, genetics, and tissue history, all of 
which can influence the healing process [87, 88]. How-
ever, their clinical delivery poses significant challenges. 
In recent years, considerable progress has been made to 
explore whether gene therapy can overcome these limi-
tations. These encouraging outcomes suggest that this 
innovative gene therapy approach holds promising po-
tential for advancing soft tissue healing in the foresee-
able future (Table 5).

Bone tumor 

The traditional treatment for osteosarcoma is aggres-
sive, with relatively modest success rates, and a signifi-
cant proportion of cases experience relapse. Moreover, 

Table 3. Genes related to gene therapy in bone healing

Gene Effect Vector Type Ref

BMP-2 Results of bone stimulation and bone tissue healing Adenoviral [69]

BMP-3 Results in bone stimulation and bone tissue healing Adenoviral [70, 71]

BMP-4 Results in bone stimulation and bone tissue healing Adenoviral [72]

PTH1-34 Results in bone stimulation and bone tissue healing Adenoviral [72]

BMP-5 Results in bone stimulation and bone tissue healing Adenoviral [73]

BMP-6 Results in bone stimulation and bone tissue healing Adenoviral [74, 75]

TGF-α Results in bone stimulation and bone tissue healing Adenoviral [76]

Table 4. Genes related to gene therapy in arthritis

Gene Effect Vector Type Ref

TGF-α Inhibit inflammatory Plasmid [79]

IL-13 Dampen autoimmune reactions and persistent inflammation Adenovirus [80, 81]

IL-1Ra Mitigate autoimmune reactions and persistent inflammation Retrovirus plasmid [82, 83]

IL-10 Inhibits the progression of the condition. Adenovirus [84]

IL-4 Reduced radiographic indication of bone deterioration Retroviral [85]

FADD Fas-induced apoptosis of synovial Adenoviral [86]
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traditional treatments for metastatic osteosarcoma pri-
marily focus on palliative care, and metastatic osteosar-
coma invariably leads to mortality. As a result, metastat-
ic osteosarcoma is a plausible candidate for gene therapy 
(Table 6) [94, 95]. 

Gaucher disease

Gaucher disease, characterized by glycolipid storage 
dysfunction, arises from numerous mutations in the glu-
cocerebrosidase gene. Approximately 80% of patients 
with Gaucher exhibit osseous complications, manifest-
ing as bone loss, osteosclerosis, osteonecrosis, and im-
paired remodeling. Consequential bone loss heightens 
skeletal fragility, often culminating in pathological frac-
tures that exhibit slow healing tendencies and commonly 
result in nonunion or malunion [97, 98]. The elucidation 
of the cDNA for the human glucocerebrosidase gene 
has ushered in the prospect of gene therapy for Gaucher 
disease. Investigations have illustrated that introducing 
this gene into fibroblasts from patients with Gaucher 
syndrome can rectify this defect. In mice, the retroviral 
transduction of hematopoietic stem cells has successfully 
achieved sustained glucocerebrosidase gene expression. 
However, translating this approach into clinical practice 
requires bone marrow ablation followed by autologous 
bone marrow transplantation, which poses a significant 
procedural challenge. Researchers have explored alter-

native strategies for targeting circulating hematopoietic 
progenitor cells expressing the CD34 marker to over-
come these obstacles. These progenitor cells can be 
harvested from peripheral blood, genetically modified 
ex vivo, and reintroduced into the patient through intra-
venous infusion. Moreover, inherited genetic disorders 
caused by collagen gene mutations, including chondro-
dysplasia, Stickler syndrome, and spondyloepiphyseal 
dysplasia, are candidates for gene therapy. Current ef-
forts aim to optimize these innovative techniques for 
treating such conditions effectively [9, 99-101].

Disorders affecting nerves and muscles

Gene therapy holds immense promise for revolution-
izing the treatment of nerve and muscular injuries. Con-
ditions such as amyotrophic lateral sclerosis and spinal 
muscular atrophy, which are characterized by progres-
sive paralysis and frequently result in premature mor-
tality, may benefit from novel therapeutic approaches. 
Although neurotrophic factors have been proposed as 
potential treatments for these disorders, their clinical 
use as injected recombinant proteins faces challenges, 
including toxicity and limited availability. However, re-
search has shown that adenovirus-mediated gene trans-
fer of NT-3 offers significant promise for addressing mo-
tor neuron diseases. For instance, intramuscular delivery 
of this construct demonstrated substantial therapeutic 

Table 5. Genes related to gene therapy in soft-tissue healing

Gene Effect Vector Type Ref

Fibroblasts Migrated away from the point of injection and assimilated into the crimp of the 
tendon Adenovirus [9, 89]

PDGF
Increased PDGF expression during ligament healing facilitates angiogenesis 

initially and subsequent augmentation of collagen deposition within the wound 
site

HVJ-liposome [9, 45]

TGF-α Improved ACL healing and facilitated graft maturation Plasmid [9]

EGF Abled to improve healing of the ACL and facilitate graft maturation Adenovirus [90, 91]

BMP-13 Potential for advancement in ligament and tendon repair Adenovirus [92]

BMP-12 Enhanced healing of posterior cruciate ligaments Adenovirus [93]

Abbreviations: HVJ: The hemagglutinating virus of Japan; PDGF: Platelet-derived growth factor; ACL: Anterior cruciate liga-
ment.

Table 6. Genes related to gene therapy in bone tumor

Gene Expression in Osteosarcoma Vector Type Effect Ref

CCG1 Up Retroviral Reduced mitotic rates and heightened stromal 
development in the remaining tumors [9]

Type 1 helper T (Th1) Down Adenovirus Efficient in eliciting anti-tumor responses by 
enhancing cell-mediated immune reactions [9, 96]
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effectiveness in a mouse model of progressive motor 
neuronopathy [102]. A recent laboratory study intro-
duced a tetracycline-regulated construct encoding nerve 
growth factor (NGF), demonstrating its dose-dependent 
modulation and responsiveness to the tetracycline ana-
log doxycycline. These results provide a foundation for 
future research exploring regulated neurotrophin deliv-
ery in animal models of neurodegenerative diseases and 
nerve injury. Ischemic peripheral neuropathy (IPN) is a 
common and irreversible complication of lower-extrem-
ity vascular insufficiency. Current research efforts aim 
to evaluate the potential of gene therapy to prevent and/
or reverse IPN. In a rabbit model, intramuscular delivery 
of naked DNA encoding VEGF during hindlimb isch-
emia effectively prevented a significant decline in mo-
tor and sensory nerve functions, facilitating rapid nerve 
recovery. This positive outcome was partly attributed to 
improved hindlimb perfusion. Furthermore, the discov-
ery of functional VEGF receptor expression in Schwann 
cells indicated a direct role for VEGF in maintaining 
neural integrity [103]. These discoveries represent a 
novel approach to addressing IPN. The diminishment or 
alteration of the survival of motor neuron 1 (SMN1) gene 
results in decreased levels of intracellular survival mo-
tor neuron protein, likely contributing to the initiation of 
spinal muscular atrophy. This effect may occur through 
potential disruption of spliceosome assembly [104]. 

Rotator cuff tears

Rotator cuff tears represent frequent soft tissue inju-
ries, often necessitating surgical intervention. Surgical 
repair of tendon tears markedly enhances pain relief and 
functional outcomes [105-107]. Previous studies have 
revealed that up to half of these tears do not heal, as 
confirmed by ultrasound or magnetic resonance imag-
ing (MRI) [108-110]. Early efforts to improve tendon 
healing focused on strengthening the repair using more 
robust suture materials and knots and restoring the rota-
tor cuff’s anatomical footprint using double-row repair 
techniques. More recent research has focused on the bio-
logical augmentation of the healing process [111, 112]. 
Tissue engineering is an interdisciplinary domain that 
applies scientific principles to develop living tissues to 
replace, repair, or enhance diseased tissues [113, 114]. 
Gene therapy involves the transfer of a specific gene into 
a cell, prompting the cell to produce a particular protein. 
The advantage of gene therapy combined with a tissue 
engineering approach for healing lies in the physician’s 
ability to select growth factors that play crucial roles 
in tendon healing. Ideally, enhancing the current repair 
technique would result in improved tendon healing and, 
consequently, better clinical outcomes [45, 115, 116].

PDGF- is pivotal in accelerating and enhancing tissue 
healing by facilitating several critical processes. These 
include chemotaxis, fibroblast proliferation, induction of 
extracellular matrix components such as fibronectin, and 
revascularization. Numerous studies have demonstrated 
that PDGF promotes DNA and matrix synthesis in ten-
don cells while enhancing the expression of cell-surface 
integrins, which are essential for tendon repair [117]. 
IGF-1 also boosts reparative mechanisms by augment-
ing DNA, collagen, and glycosaminoglycan synthesis. 
Studies conducted in controlled laboratory settings and 
within living organisms have clarified IGF-1’s capacity 
to reduce inflammation and concurrently promote cel-
lular proliferation, collagen generation, and DNA levels 
[118, 119]. 

Conclusion 

Gene therapy is a promising approach for treating vari-
ous orthopedic conditions, with research showing feasi-
bility in laboratory and initial clinical trials. Understand-
ing the molecular genetics of skeletal disorders has led to 
innovative treatments involving the introduction of spe-
cific genes into patient cells to influence bone repair and 
regeneration. This method can potentially manage ge-
netic disorders, such as osteogenesis imperfecta, chronic 
conditions, such as arthritis, and injuries, such as bone 
and cartilage damage. Animal studies have shown posi-
tive results in osteoarthritis, bone healing, and ligament 
healing. However, challenges remain in identifying op-
timal cellular targets, therapeutic genes, and safe deliv-
ery methods. Future research should aim to understand 
the genes and signaling pathways involved in bone cell 
growth, identify more effective therapeutic genes, and 
explore combining genes for better outcomes. Non-viral 
vectors have emerged as alternatives to viral vectors. 
The integration of gene therapy with existing treatments, 
such as protein therapy and tissue engineering, is also 
being explored. Advances in genetic markers, genomics, 
and proteomics will help identify treatment targets, and 
molecular imaging technology will aid in studying the 
role of expressed molecules, leading to further progress 
in this field.
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