
125

 August 2023. Volume 10. Number 3

Morteza Nakhaei Amroodi1 , Khatere Mokhtari2 , Mojtaba BaniAsadi1, Saeedreza Amiri1, Mansour Krimi1, Pouria Tabrizian1*  

1. Department of Orthopedics, Bone and Joint Reconstruction Research Center, School of Medicine, Shafayahyaeian Hospital, Iran University of Medical 
Sciences, Tehran, Iran.
2. Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran. 

* Corresponding Author:
Pouria Tabrizian, MD.
Address: Department of Orthopedics, Bone and Joint Reconstruction Research Center, School of Medicine, Shafayahyaeian Hospital, Iran University of 
Medical Sciences, Tehran, Iran.
E-mail: tabrizian.pouria@gmail.com

Review Paper
Exploring the Role of Wnt Signaling Pathway in 
Orthopedic Health and Disease: Mini-review

The intricate orchestration of cell types and developmental processes in multicellular organisms 
hinges upon signaling pathways, such as Wnt, which play a pivotal role in embryonic development 
and adult tissue homeostasis. Over the past four decades, significant efforts have been made to 
elucidate the complexities of the Wnt signaling pathway and its diverse physiological functions. 
Wnt signaling has emerged as a crucial regulator in orthopedic contexts, particularly in fracture 
healing and osteoarthritis. This review delves into the intricate involvement of the Wnt pathway 
in these orthopedic conditions and explores its impact on bone formation, chondrogenesis, and 
joint pathologies. Moreover, it examines the therapeutic potential of targeting Wnt signaling in 
the treatment of osteoporosis, highlighting the promising avenues opened by advancements in 
understanding rare bone disorders, such as sclerosteosis and van Buchem disease. By elucidating 
the multifaceted roles of Wnt signaling in orthopedic health and disease, this review offers 
insights into potential therapeutic strategies to enhance fracture healing, mitigate osteoarthritis 
progression, and address bone-related disorders.
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Introduction

he evolution from unicellular to multicellu-
lar organisms signaled the dawn of intricate 
life forms. With multicellularity, orchestrat-
ing the creation and arrangement of diverse 
cell types during development ensures their 
sustained presence throughout an organ-

ism’s lifespan. The Wnt pathway is one of the earliest 
signaling pathways to govern these vital physiological 
mechanisms [1, 2]. The Wnt signaling pathway operates 
as a communication cascade between cells, triggered by 
the presence of lipid-modified proteins from the Wnt 
family secreted by one cell. At its core, this pathway in-
volves a Wnt ligand emitted by a secreting cell, which 
interacts with specific receptors on the surface of a re-
ceiving cell along with intracellular signal transducers. 
Once the ligand is recognized and the signal relayed 
inside the cell, activation of the pathway ensues, elicit-
ing various cellular responses such as increased mitotic 
activity, determination of cell types, or establishment of 
cell polarity. These responses coordinate crucial devel-
opmental processes in organisms. Beyond development, 
Wnt signaling regulates tissue equilibrium and facilitates 
regeneration in adulthood [3, 4]. Over the 40 years since 
the initial discovery of the first Wnt gene, extensive re-
search has revealed various components of the Wnt sig-
naling pathway and elucidated their functions in many 
physiological contexts spanning the animal kingdom [5]. 
Additionally, researchers have explored the involvement 
of the Wnt signaling pathway in orthopedics, uncovering 
its relevance in certain orthopedic conditions. Further in-
vestigation of its role in this field is required [6, 7].

Components of the Wnt signaling pathway at the 
molecular level

Wnt proteins stem from various Wnt genes, among 
which Wnt1 is the pioneering member, initially discov-
ered more than 30 years ago in murine models [8]. Mam-
malian genomes contain up to 19 distinct Wnt genes [8]. 
Genes within the Wnt family encode secreted growth 
factor proteins rich in cysteine, playing pivotal roles as 
signaling molecules [9]. Wnt proteins are transported 
into the extracellular space aided by Wntless proteins. 
Following secretion, they bind cell surface receptors 
on target cells [10]. Wnt proteins exhibiting these traits 
were classified as canonical, while those lacking these 
characteristics were categorized as non-canonical [11]. 
Canonical Wnts have been demonstrated to elevate cel-
lular levels of the transcriptional coactivator β-catenin, 
thereby showcasing their transformative potential [12]. 
In contrast, non-canonical Wnt ligands activate alter-

native signaling pathways independently of β-catenin. 
These pathways involve different molecular mecha-
nisms, such as releasing intracellular calcium and ac-
tivating protein kinase C or c-Jun N-terminal kinase. 
The regulatory mechanisms governing the canonical 
Wnt/β-catenin pathway ensure that β-catenin levels re-
main low under non-activated conditions, preventing its 
accumulation and subsequent activation of downstream 
gene transcription. This tight regulation is essential for 
maintaining cellular homeostasis and preventing inap-
propriate pathway activation, which can lead to various 
diseases [13]. Under normal conditions, cytoplasmic 
β-catenin levels remain low without Wnt signaling. Ac-
tivation of the Wnt/β-catenin pathway occurs when a 
Wnt ligand binds to a receptor from the Frizzled family, 
which is accompanied by the recruitment of co-receptor 
low-density lipoprotein receptor-related protein 5 or 
6 (LRP5/6). This ligand-receptor interaction triggers a 
cascade of intracellular signaling events that stabilize 
β-catenin. This prevents its degradation and allows it 
to accumulate in the cytoplasm where it can translo-
cate to the nucleus and influence gene transcription. 
Activation of the Wnt/β-catenin pathway is crucial for 
various cellular processes, including cell proliferation, 
differentiation, and tissue homeostasis [13]. Given its 
critical role in development and tissue maintenance, it is 
unsurprising that a diverse array of modifiers regulates 
the β-catenin pathway activity. These regulators ensure 
that the pathway functions appropriately across differ-
ent stages of cellular processes, such as cell proliferation, 
differentiation, and tissue homeostasis. Through this ex-
tensive network of controls, the β-catenin pathway can 
be precisely tuned to meet the organism’s needs while 
preventing aberrant activation that could lead to diseases 
such as cancer or developmental disorders. These effec-
tors can exert either promoting or antagonistic effects at 
different stages of the signaling cascade, highlighting the 
complexity of their regulation. This intricate control en-
sures that the pathway functions properly in various cel-
lular processes, such as cell proliferation, differentiation, 
and tissue homeostasis while preventing aberrant activa-
tion that could lead to diseases like cancer. The diverse 
range of regulatory proteins underscores the pathway’s 
dynamic and context-dependent nature. Usually, the 
canonical Wnt/β-catenin pathway is recognized for its 
osteoanabolic effects, as evidenced by the considerable 
osteoporotic bone characteristics observed in humans 
and mice with deficiencies in one or more elements of 
this signaling pathway [14-17].

T
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The role of the Wnt signaling pathway in bone 
fracture repair

Bone tissue possesses the unique ability for scarless 
self-repair following injury. Nonetheless, the complex 
process of effective fracture healing depends on precise 
interactions between diverse cell types and signaling 
molecules. Any disturbance to this tightly orchestrated 
process can result in delayed healing or non-union for-
mation [18]. Orthopedic patients may experience frac-
ture healing complications at a reported rate of 5%–20% 
[19, 20]. Impaired bone healing can arise from various 
factors, including inadequate mechanical stabilization, 
infections, compromised blood supply, concurrent medi-
cal conditions, advanced age, hormonal imbalances, nu-
tritional deficiencies, medication regimens, and genetic 
variations [21-23]. This pathway is essential for several 
critical functions, including embryonic bone develop-
ment, maintenance of bone homeostasis, mechanotrans-
duction in bone tissue, and bone regeneration. It orches-
trates key processes that govern bone formation and 
growth during development while ensuring bone integ-
rity throughout life. Furthermore, they are vital in sens-
ing mechanical forces and facilitating bone repair and 
regeneration. Given its widespread influence on skeletal 
health, understanding this pathway offers valuable in-
sights into potential therapeutic approaches for treating 
bone disorders and promoting the healing of bone inju-
ries [24-27]. 

Osteoarthritis and Wnt

Osteoarthritis (OA) is the most widespread joint ail-
ment, marked by deterioration of articular cartilage, ir-
regular bone restructuring, and formation of osteophytes, 
culminating in chronic pain and limitations in joint func-
tion. Radiographic indications of OA are prevalent in 
most individuals by the age of 65 years, with approxi-
mately 80% of those aged >75 years experiencing its ef-
fects [28]. Numerous studies have documented the inci-
dence of OA; however, the pathogenesis remains unclear. 
Degeneration of articular cartilage is a primary driver of 
pathological alterations in OA. Cartilage, being avascu-
lar, lacking nerves and lymphatics, and possessing vis-
coelastic properties, primarily bears loads and facilitates 
smooth joint movement [29]. Chondrocytes, the exclu-
sive cell type found in adult articular cartilage, respond 
to structural changes, including alterations in collagen 
synthesis and degradation of the extracellular matrix 
[30, 31]. The primary components of articular cartilage 
are collagens, primarily type II collagen and aggrecan. 
Type II collagen provides structural support, contributing 
to the cartilage’s tensile strength, while aggrecan, a large 

proteoglycan, is responsible for retaining water and main-
taining the cartilage’s compressive properties. Together, 
these molecules play a crucial role in maintaining articu-
lar cartilage’s mechanical integrity and elasticity, which 
is essential for joint function [32, 33]. The degeneration 
of articular cartilage is thought to arise from an imbal-
ance between synthesis and metabolic activity [34-37]. 
The influence of Wnt proteins on OA is evident through 
their effects on various bone-related processes, including 
bone formation, endochondral ossification, bone growth, 
repair, and joint development. These pathways regulate 
cellular mechanisms that maintain the integrity and func-
tion of bones and joints. Disruptions in Wnt signaling can 
contribute to the pathogenesis of OA by affecting these 
crucial processes. Understanding the role of Wnt in OA 
provides valuable insights into potential therapeutic tar-
gets aimed at modulating these pathways to slow disease 
progression and promote joint health [38]. Bone growth 
encompasses a complex sequence of chondrocytes 
events, including proliferation, migration, condensation, 
and adhesion [38, 39]. Wnt3a promotes chondrocyte hy-
pertrophy and differentiation by activating the canonical 
Wnt signaling pathway. This activation plays a pivotal 
role in regulating cartilage development and maturation, 
suggesting that Wnt3a is a key player in cartilage biology 
and may have implications for understanding cartilage-
related diseases and potential therapeutic strategies [40, 
41]. Wnt5a activates the Wnt/β-catenin pathway, result-
ing in increased release of inflammatory mediators. This 
activation exacerbates cartilage damage, enhances in-
flammatory responses, and accelerates OA progression. 
These results suggest that Wnt5a significantly amplifies 
the inflammatory processes that drive OA pathogenesis, 
highlighting its potential as a therapeutic target for miti-
gating disease progression [42-45]. Wnt proteins, includ-
ing Wnt7b and Wnt receptors, such as LRP and Wnt an-
tagonists, are crucial in activating Wnt signaling pathways 
and regulating osteocyte maturation and bone growth. 
These molecules orchestrate key processes in bone de-
velopment by modulating the differentiation and function 
of osteocytes, influencing bone formation, remodeling, 
and homeostasis. The dynamic interplay between Wnt 
proteins, their receptors, and antagonists is essential for 
maintaining bone health and may offer therapeutic tar-
gets for bone-related disorders [44, 45]. A previous study 
established a strong relationship between Wnt7b and 
inflammation in the articular cartilage, bone, and syno-
vial tissues derived from patients with OA and RA. This 
connection underscores the potential role of Wnt7b in 
driving inflammatory processes in these tissues, offering 
insights into its possible involvement in the pathophysi-
ology of both OA and RA [46-49]. Numerous investiga-
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tions have suggested that most Wnt molecules can trigger 
both Wnt cascade and non-cascade pathways, conse-
quently contributing to cartilage deterioration. However, 
Wnt16 is known to activate Wnt signaling and counteract 
the progression of cartilage degradation by regulating ex-
cessive Wnt activation [50-52]. It has been demonstrated 
that Wnt16 shows limited activation of β-catenin. Ad-
ditionally, the study highlighted that increasing Wnt16 
levels could slow disease progression by modulating the 
Wnt/β-catenin pathway in temporomandibular OA. This 
suggests that enhancing Wnt16 expression may provide 
a therapeutic approach for managing OA by influencing 
the key signaling mechanisms involved in its pathogen-
esis [53]. A substantial body of research investigating the 
role of Wnt molecules and their effects on OA has signifi-
cantly advanced our understanding of Wnt biology. This 
growing body of knowledge has illuminated the complex 
mechanisms through which Wnt signaling contributes 
to OA pathogenesis, offering potential new avenues for 
therapeutic intervention to modulate these pathways to 
mitigate disease progression [54]. While numerous stud-
ies have emphasized the pivotal role of Wnt signaling in 
bone and joint formation, a considerable body of research 
has also suggested the potential benefits of inhibiting 
Wnt signaling and the associated pathways in managing 
OA. Thus, it is essential to regulate the biological activity 
of Wnt-related pathways in a balanced manner, given the 
complexity of these signaling networks in OA (Figure 1).

Rotator cuff tears (RCT) and Wnt

The RCT are prevalent musculotendinous injuries that 
often result in functional impairment and persistent pain 
in a significant proportion of affected individuals [55, 
56]. Secondary muscle degeneration, characterized by 
phenomena, such as fatty infiltration, plays a crucial role 
in RCT [57]. Although surgical repair is the standard ap-
proach for treating ruptured rotator cuff tendons, it is of-
ten insufficient to prevent or reduce fatty infiltration in 
the surrounding skeletal muscle. This limitation suggests 
that while tendon repair may restore mechanical function, 
additional strategies may be necessary to address the un-
derlying muscle degeneration and prevent further adipose 
tissue accumulation within the muscle [58, 59]. Progres-
sive fatty degeneration of skeletal muscles substantially 
reduces elasticity and contractile strength, increasing the 
likelihood of tendon retear after surgical repair. This de-
cline in muscle function compromises the stability and ef-
fectiveness of the repaired tendon, emphasizing the need 
for interventions that address tendon injury and prevent 
or reverse muscle degeneration to enhance long-term re-
covery outcomes [60, 61]. In large RCT, both the quantity 
of fibroadipogenic progenitors (FAPs) and their capacity 
for adipogenic differentiation tend to increase [62]. More-
over, previous studies have indicated that inhibitors of 
the platelet-derived growth factor receptor α (PDGFRα) 
pathway, such as imatinib, retinoic receptor agonists like 

Figure 1. Role of Wnt members in OA
OA: Osteoarthritis.
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adapalene, and β-3 agonists, such as amibegron, can ef-
fectively inhibit the adipogenic differentiation of FAPs 
and alleviate fatty infiltration in cases of RCT [63, 64]. 
It is widely recognized that the AKT signaling pathway 
and Wnt5a/glycogen synthase kinase-3 beta (GSK3/β)-
catenin pathway are critically involved in adipogenesis in 
FAPs. These pathways play a fundamental role in regu-
lating the differentiation of FAPs into adipocytes, influ-
encing various cellular processes, such as proliferation, 
differentiation, and the balance between adipogenesis and 
other mesenchymal lineage commitments. The intricate 
interactions between these signaling networks underscore 
their importance in maintaining tissue homeostasis and 
their potential as therapeutic targets for conditions related 
to adipose tissue accumulation or loss [65, 66]. The dis-
tinct roles of these pathways in FAPs following RCT re-
main an area of interest for further investigation. It is cru-
cial to note that excessive fatty infiltration in muscle tissue 
tends to be less common and generally less severe follow-
ing other tendon injuries, such as Achilles tendon tears. 
This contrast highlights the unique pathophysiological 
responses triggered by different types of tendon injuries. 
It suggests that the mechanisms involved in fatty infiltra-
tion may vary depending on the specific tendon and injury 
context [67, 68]. The observed disparity in fatty infiltra-
tion patterns between the rotator cuff and gastrocnemius 
muscle following tendon tears suggests that there may be 
distinct differences in FAPs between these two muscle 
groups. Further investigation into these potential differ-
ences could offer valuable insights into the mechanisms 
underlying fatty infiltration after tendon injuries [69-71]. 
According to research results, early treadmill exercise in-
duces elevated levels of neuropeptide Y (NPY) at the site 
of rotator cuff healing, which could potentially suppress 
the expression of Wnt3a/β-catenin, thereby extending the 
duration of the healing process [72].

Osteoporosis and the role of the Wnt signaling 
pathway 

Osteoporosis, a common bone disorder, is character-
ized by a significant reduction in bone mass, mineral 
density, and overall bone strength, leading to an elevated 
risk of fracture. This compromises the structural integ-
rity of bones, making them more fragile and prone to 
breaking even under minimal stress or injury [73]. Wnt 
signaling plays a crucial role in bone development, regu-
lating osteoblast differentiation, maturation, and main-
taining normal bone homeostasis. Its activation can have 
dual effects in treating bone diseases, promoting bone 
formation under certain conditions while potentially ex-
acerbating pathological bone remodeling in others. This 
duality underscores the complexity of Wnt signaling and 

highlights the need for precise modulation to optimize 
therapeutic outcomes [73, 74]. β-catenin knockdown 
leads to a significant increase in osteoclast numbers, 
driving enhanced bone resorption and substantially re-
ducing bone mass. This process plays a critical role in 
the pathogenesis of osteoporosis, as the imbalance be-
tween bone resorption and formation ultimately compro-
mises skeletal integrity [75]. Bone resorption inhibitors 
include bisphosphonates, estrogen, calcitonin, selective 
estrogen receptor modulators, and Wnt pathway inhibi-
tors. Among these, dickkopf-1 (Dkk-1) is a key antago-
nist of the Wnt signaling pathway and plays a significant 
role in bone development and remodeling. Its mecha-
nism involves the inhibition of Wnt signaling through 
competitive binding to the β-helix domain of LRP5/6 co-
receptors, which prevents the activation of downstream 
signaling cascades. This modulation ultimately influenc-
es the transcription of Wnt target genes, impacting bone 
homeostasis by regulating the balance between bone 
formation and resorption [76, 77]. Additionally, patients 
experiencing disuse bone loss due to prolonged bed rest 
showed significantly elevated serum levels of Dkk-1 
and diminished β-catenin expression. These changes are 
associated with reduced bone formation and increased 
bone resorption, highlighting the critical role of Wnt sig-
naling dysregulation in the pathophysiology of bone loss 
under such conditions [78]. These studies highlight that 
increased Dkk-1 levels can inhibit osteoblast function 
and disrupt bone formation. Therefore, targeting Dkk-
1 expression in bone tissue is a promising therapeutic 
approach for osteoporosis, aiming to restore the balance 
between bone resorption and formation, thereby enhanc-
ing bone health [79, 80]. 

Sclerosteosis and Van Buchem disease and Wnt

Skeletal dysplasia is a broad group of genetic disorders 
resulting from defects in critical pathways and genes in-
volved in bone growth, differentiation, and mineraliza-
tion. These disorders are characterized by abnormalities 
in several essential signaling pathways that play pivotal 
roles in bone biology. Key implicated pathways include 
Wnt signaling, NOTCH signaling, fibroblast growth fac-
tor signaling, and Hedgehog signaling. These pathways 
regulate various cellular processes, such as osteoblast 
differentiation, cell cycle regulation, and maintaining the 
balance between bone formation and resorption. Disrup-
tions in any of these pathways can lead to a wide range of 
disorders with clinical manifestations that vary depend-
ing on the specific genes involved and the severity of 
the dysfunction [81-83]. Sclerosteosis and van Buchem 
disease are autosomal recessive skeletal dysplasia char-
acterized by a deficiency in sclerostin protein, leading 
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to progressive skeletal overgrowth [84]. Sclerosteosis 
predominantly manifests among the progeny of Dutch 
colonists who arrived in South Africa during the seven-
teenth century. Van Buchem disease predominantly oc-
curs in the Dutch population residing in the Netherlands 
[85, 86]. The skeletal features observed in both scleros-
teosis and van Buchem disease share similarities, such as 
heightened skull thickening, jawbones, long bones, and 
ribs [84, 87, 88]. Although mature osteoblasts produce 
sclerostin to some extent, osteocytes are the primary 
source of sclerostin [89]. The Wnt/β-catenin signaling 
pathway activates osteogenic differentiation and sup-
ports bone formation [90]. Sclerostin, a potent inhibitor 
of the Wnt pathway, modulates osteogenic differentia-
tion of precursor cells and impacts bone formation [91]. 
In contrast, suppression of the Wnt pathway results in 
upregulation of receptor activator of nuclear factor-κB 
ligand (RANKL) and dysregulation of osteoprotegerin 
(OPG), ultimately leading to the promotion of osteoclas-
togenesis [38]. Investigations into rare bone disorders, 
such as sclerosteosis and van Buchem disease, have re-
vealed the critical role of sclerostin in maintaining bone 
homeostasis [92]. In cases of sclerostin deficiency, osteo-
cytes lose their ability to regulate new bone deposition 
by osteoblasts, akin to a snake without fangs [93]. Since 
both conditions arise from genetic mutations resulting in 
osteocytic sclerostin deficiency, directing therapeutic in-
terventions toward the osteocyte could represent a prom-
ising approach for treating these diseases.

Conclusion 

In conclusion, the Wnt signaling pathway is a pivotal 
regulator of numerous facets of musculoskeletal biology, 
influencing everything from development and homeo-
stasis to pathological conditions, such as osteoarthritis, 
fracture healing, rotator cuff tears, and osteoporosis. 
This review highlights the complex interactions between 
Wnt signaling and critical cellular processes that govern 
bone and joint health, emphasizing its essential role in 
maintaining musculoskeletal integrity. Understanding 
these mechanisms offers valuable insights into potential 
therapeutic strategies for treating musculoskeletal disor-
ders and enhancing tissue repair and regeneration.
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