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ABSTRACT

The intricate orchestration of cell types and developmental processes in multicellular organisms
hinges upon signaling pathways, such as Wnt, which play a pivotal role in embryonic development
and adult tissue homeostasis. Over the past four decades, significant efforts have been made to
elucidate the complexities of the Wnt signaling pathway and its diverse physiological functions.
Wnt signaling has emerged as a crucial regulator in orthopedic contexts, particularly in fracture
healing and osteoarthritis. This review delves into the intricate involvement of the Wnt pathway
in these orthopedic conditions and explores its impact on bone formation, chondrogenesis, and
joint pathologies. Moreover, it examines the therapeutic potential of targeting Wnt signaling in
the treatment of osteoporosis, highlighting the promising avenues opened by advancements in
understanding rare bone disorders, such as sclerosteosis and van Buchem disease. By elucidating
the multifaceted roles of Wnt signaling in orthopedic health and disease, this review offers
insights into potential therapeutic strategies to enhance fracture healing, mitigate osteoarthritis
progression, and address bone-related disorders.
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Introduction

he evolution from unicellular to multicellu-
lar organisms signaled the dawn of intricate
life forms. With multicellularity, orchestrat-
ing the creation and arrangement of diverse
cell types during development ensures their
sustained presence throughout an organ-
ism’s lifespan. The Wnt pathway is one of the earliest
signaling pathways to govern these vital physiological
mechanisms [1, 2]. The Wnt signaling pathway operates
as a communication cascade between cells, triggered by
the presence of lipid-modified proteins from the Wnt
family secreted by one cell. At its core, this pathway in-
volves a Wnt ligand emitted by a secreting cell, which
interacts with specific receptors on the surface of a re-
ceiving cell along with intracellular signal transducers.
Once the ligand is recognized and the signal relayed
inside the cell, activation of the pathway ensues, elicit-
ing various cellular responses such as increased mitotic
activity, determination of cell types, or establishment of
cell polarity. These responses coordinate crucial devel-
opmental processes in organisms. Beyond development,
Wnt signaling regulates tissue equilibrium and facilitates
regeneration in adulthood [3, 4]. Over the 40 years since
the initial discovery of the first Wnt gene, extensive re-
search has revealed various components of the Wnt sig-
naling pathway and elucidated their functions in many
physiological contexts spanning the animal kingdom [5].
Additionally, researchers have explored the involvement
of the Wnt signaling pathway in orthopedics, uncovering
its relevance in certain orthopedic conditions. Further in-
vestigation of its role in this field is required [6, 7].

Wnt proteins stem from various Wnt genes, among
which Wntl is the pioneering member, initially discov-
ered more than 30 years ago in murine models [8]. Mam-
malian genomes contain up to 19 distinct Wnt genes [8].
Genes within the Wnt family encode secreted growth
factor proteins rich in cysteine, playing pivotal roles as
signaling molecules [9]. Wnt proteins are transported
into the extracellular space aided by Wntless proteins.
Following secretion, they bind cell surface receptors
on target cells [10]. Wnt proteins exhibiting these traits
were classified as canonical, while those lacking these
characteristics were categorized as non-canonical [11].
Canonical Wnts have been demonstrated to elevate cel-
lular levels of the transcriptional coactivator 3-catenin,
thereby showcasing their transformative potential [12].
In contrast, non-canonical Wnt ligands activate alter-
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native signaling pathways independently of B-catenin.
These pathways involve different molecular mecha-
nisms, such as releasing intracellular calcium and ac-
tivating protein kinase C or c-Jun N-terminal kinase.
The regulatory mechanisms governing the canonical
Whnt/B-catenin pathway ensure that B-catenin levels re-
main low under non-activated conditions, preventing its
accumulation and subsequent activation of downstream
gene transcription. This tight regulation is essential for
maintaining cellular homeostasis and preventing inap-
propriate pathway activation, which can lead to various
diseases [13]. Under normal conditions, cytoplasmic
[B-catenin levels remain low without Wnt signaling. Ac-
tivation of the Wnt/B-catenin pathway occurs when a
Wnt ligand binds to a receptor from the Frizzled family,
which is accompanied by the recruitment of co-receptor
low-density lipoprotein receptor-related protein 5 or
6 (LRP5/6). This ligand-receptor interaction triggers a
cascade of intracellular signaling events that stabilize
B-catenin. This prevents its degradation and allows it
to accumulate in the cytoplasm where it can translo-
cate to the nucleus and influence gene transcription.
Activation of the Wnt/B-catenin pathway is crucial for
various cellular processes, including cell proliferation,
differentiation, and tissue homeostasis [13]. Given its
critical role in development and tissue maintenance, it is
unsurprising that a diverse array of modifiers regulates
the B-catenin pathway activity. These regulators ensure
that the pathway functions appropriately across differ-
ent stages of cellular processes, such as cell proliferation,
differentiation, and tissue homeostasis. Through this ex-
tensive network of controls, the B-catenin pathway can
be precisely tuned to meet the organism’s needs while
preventing aberrant activation that could lead to diseases
such as cancer or developmental disorders. These effec-
tors can exert either promoting or antagonistic effects at
different stages of the signaling cascade, highlighting the
complexity of their regulation. This intricate control en-
sures that the pathway functions properly in various cel-
lular processes, such as cell proliferation, differentiation,
and tissue homeostasis while preventing aberrant activa-
tion that could lead to diseases like cancer. The diverse
range of regulatory proteins underscores the pathway’s
dynamic and context-dependent nature. Usually, the
canonical Wnt/B-catenin pathway is recognized for its
osteoanabolic effects, as evidenced by the considerable
osteoporotic bone characteristics observed in humans
and mice with deficiencies in one or more elements of
this signaling pathway [14-17].
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Bone tissue possesses the unique ability for scarless
self-repair following injury. Nonetheless, the complex
process of effective fracture healing depends on precise
interactions between diverse cell types and signaling
molecules. Any disturbance to this tightly orchestrated
process can result in delayed healing or non-union for-
mation [18]. Orthopedic patients may experience frac-
ture healing complications at a reported rate of 5%—20%
[19, 20]. Impaired bone healing can arise from various
factors, including inadequate mechanical stabilization,
infections, compromised blood supply, concurrent medi-
cal conditions, advanced age, hormonal imbalances, nu-
tritional deficiencies, medication regimens, and genetic
variations [21-23]. This pathway is essential for several
critical functions, including embryonic bone develop-
ment, maintenance of bone homeostasis, mechanotrans-
duction in bone tissue, and bone regeneration. It orches-
trates key processes that govern bone formation and
growth during development while ensuring bone integ-
rity throughout life. Furthermore, they are vital in sens-
ing mechanical forces and facilitating bone repair and
regeneration. Given its widespread influence on skeletal
health, understanding this pathway offers valuable in-
sights into potential therapeutic approaches for treating
bone disorders and promoting the healing of bone inju-
ries [24-27].

Osteoarthritis (OA) is the most widespread joint ail-
ment, marked by deterioration of articular cartilage, ir-
regular bone restructuring, and formation of osteophytes,
culminating in chronic pain and limitations in joint func-
tion. Radiographic indications of OA are prevalent in
most individuals by the age of 65 years, with approxi-
mately 80% of those aged >75 years experiencing its ef-
fects [28]. Numerous studies have documented the inci-
dence of OA; however, the pathogenesis remains unclear.
Degeneration of articular cartilage is a primary driver of
pathological alterations in OA. Cartilage, being avascu-
lar, lacking nerves and lymphatics, and possessing vis-
coelastic properties, primarily bears loads and facilitates
smooth joint movement [29]. Chondrocytes, the exclu-
sive cell type found in adult articular cartilage, respond
to structural changes, including alterations in collagen
synthesis and degradation of the extracellular matrix
[30, 31]. The primary components of articular cartilage
are collagens, primarily type II collagen and aggrecan.
Type II collagen provides structural support, contributing
to the cartilage’s tensile strength, while aggrecan, a large
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proteoglycan, is responsible for retaining water and main-
taining the cartilage’s compressive properties. Together,
these molecules play a crucial role in maintaining articu-
lar cartilage’s mechanical integrity and elasticity, which
is essential for joint function [32, 33]. The degeneration
of articular cartilage is thought to arise from an imbal-
ance between synthesis and metabolic activity [34-37].
The influence of Wnt proteins on OA is evident through
their effects on various bone-related processes, including
bone formation, endochondral ossification, bone growth,
repair, and joint development. These pathways regulate
cellular mechanisms that maintain the integrity and func-
tion of bones and joints. Disruptions in Wnt signaling can
contribute to the pathogenesis of OA by affecting these
crucial processes. Understanding the role of Wnt in OA
provides valuable insights into potential therapeutic tar-
gets aimed at modulating these pathways to slow disease
progression and promote joint health [38]. Bone growth
encompasses a complex sequence of chondrocytes
events, including proliferation, migration, condensation,
and adhesion [38, 39]. Wnt3a promotes chondrocyte hy-
pertrophy and differentiation by activating the canonical
Wnt signaling pathway. This activation plays a pivotal
role in regulating cartilage development and maturation,
suggesting that Wnt3a is a key player in cartilage biology
and may have implications for understanding cartilage-
related diseases and potential therapeutic strategies [40,
41]. Wnt5a activates the Wnt/B-catenin pathway, result-
ing in increased release of inflammatory mediators. This
activation exacerbates cartilage damage, enhances in-
flammatory responses, and accelerates OA progression.
These results suggest that Wnt5a significantly amplifies
the inflammatory processes that drive OA pathogenesis,
highlighting its potential as a therapeutic target for miti-
gating disease progression [42-45]. Wnt proteins, includ-
ing Wnt7b and Wnt receptors, such as LRP and Wnt an-
tagonists, are crucial in activating Wnt signaling pathways
and regulating osteocyte maturation and bone growth.
These molecules orchestrate key processes in bone de-
velopment by modulating the differentiation and function
of osteocytes, influencing bone formation, remodeling,
and homeostasis. The dynamic interplay between Wnt
proteins, their receptors, and antagonists is essential for
maintaining bone health and may offer therapeutic tar-
gets for bone-related disorders [44, 45]. A previous study
established a strong relationship between Wnt7b and
inflammation in the articular cartilage, bone, and syno-
vial tissues derived from patients with OA and RA. This
connection underscores the potential role of Wnt7b in
driving inflammatory processes in these tissues, offering
insights into its possible involvement in the pathophysi-
ology of both OA and RA [46-49]. Numerous investiga-
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Figure 1. Role of Wnt members in OA
OA: Osteoarthritis.

tions have suggested that most Wnt molecules can trigger
both Wnt cascade and non-cascade pathways, conse-
quently contributing to cartilage deterioration. However,
Wntl6 is known to activate Wnt signaling and counteract
the progression of cartilage degradation by regulating ex-
cessive Wnt activation [50-52]. It has been demonstrated
that Wntl6 shows limited activation of pB-catenin. Ad-
ditionally, the study highlighted that increasing Wnt16
levels could slow disease progression by modulating the
Wnt/B-catenin pathway in temporomandibular OA. This
suggests that enhancing Wnt16 expression may provide
a therapeutic approach for managing OA by influencing
the key signaling mechanisms involved in its pathogen-
esis [53]. A substantial body of research investigating the
role of Wnt molecules and their effects on OA has signifi-
cantly advanced our understanding of Wnt biology. This
growing body of knowledge has illuminated the complex
mechanisms through which Wnt signaling contributes
to OA pathogenesis, offering potential new avenues for
therapeutic intervention to modulate these pathways to
mitigate disease progression [54]. While numerous stud-
ies have emphasized the pivotal role of Wnt signaling in
bone and joint formation, a considerable body of research
has also suggested the potential benefits of inhibiting
Wnt signaling and the associated pathways in managing
OA. Thus, it is essential to regulate the biological activity
of Wnt-related pathways in a balanced manner, given the
complexity of these signaling networks in OA (Figure 1).
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The RCT are prevalent musculotendinous injuries that
often result in functional impairment and persistent pain
in a significant proportion of affected individuals [55,
56]. Secondary muscle degeneration, characterized by
phenomena, such as fatty infiltration, plays a crucial role
in RCT [57]. Although surgical repair is the standard ap-
proach for treating ruptured rotator cuff tendons, it is of-
ten insufficient to prevent or reduce fatty infiltration in
the surrounding skeletal muscle. This limitation suggests
that while tendon repair may restore mechanical function,
additional strategies may be necessary to address the un-
derlying muscle degeneration and prevent further adipose
tissue accumulation within the muscle [58, 59]. Progres-
sive fatty degeneration of skeletal muscles substantially
reduces elasticity and contractile strength, increasing the
likelihood of tendon retear after surgical repair. This de-
cline in muscle function compromises the stability and ef-
fectiveness of the repaired tendon, emphasizing the need
for interventions that address tendon injury and prevent
or reverse muscle degeneration to enhance long-term re-
covery outcomes [60, 61]. In large RCT, both the quantity
of fibroadipogenic progenitors (FAPs) and their capacity
for adipogenic differentiation tend to increase [62]. More-
over, previous studies have indicated that inhibitors of
the platelet-derived growth factor receptor oo (PDGFRa)
pathway, such as imatinib, retinoic receptor agonists like
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adapalene, and -3 agonists, such as amibegron, can ef-
fectively inhibit the adipogenic differentiation of FAPs
and alleviate fatty infiltration in cases of RCT [63, 64].
It is widely recognized that the AKT signaling pathway
and WntSa/glycogen synthase kinase-3 beta (GSK3/B)-
catenin pathway are critically involved in adipogenesis in
FAPs. These pathways play a fundamental role in regu-
lating the differentiation of FAPs into adipocytes, influ-
encing various cellular processes, such as proliferation,
differentiation, and the balance between adipogenesis and
other mesenchymal lineage commitments. The intricate
interactions between these signaling networks underscore
their importance in maintaining tissue homeostasis and
their potential as therapeutic targets for conditions related
to adipose tissue accumulation or loss [65, 66]. The dis-
tinct roles of these pathways in FAPs following RCT re-
main an area of interest for further investigation. It is cru-
cial to note that excessive fatty infiltration in muscle tissue
tends to be less common and generally less severe follow-
ing other tendon injuries, such as Achilles tendon tears.
This contrast highlights the unique pathophysiological
responses triggered by different types of tendon injuries.
It suggests that the mechanisms involved in fatty infiltra-
tion may vary depending on the specific tendon and injury
context [67, 68]. The observed disparity in fatty infiltra-
tion patterns between the rotator cuff and gastrocnemius
muscle following tendon tears suggests that there may be
distinct differences in FAPs between these two muscle
groups. Further investigation into these potential differ-
ences could offer valuable insights into the mechanisms
underlying fatty infiltration after tendon injuries [69-71].
According to research results, early treadmill exercise in-
duces elevated levels of neuropeptide Y (NPY) at the site
of rotator cuff healing, which could potentially suppress
the expression of Wnt3a/B-catenin, thereby extending the
duration of the healing process [72].

Osteoporosis, a common bone disorder, is character-
ized by a significant reduction in bone mass, mineral
density, and overall bone strength, leading to an elevated
risk of fracture. This compromises the structural integ-
rity of bones, making them more fragile and prone to
breaking even under minimal stress or injury [73]. Wnt
signaling plays a crucial role in bone development, regu-
lating osteoblast differentiation, maturation, and main-
taining normal bone homeostasis. Its activation can have
dual effects in treating bone diseases, promoting bone
formation under certain conditions while potentially ex-
acerbating pathological bone remodeling in others. This
duality underscores the complexity of Wnt signaling and
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highlights the need for precise modulation to optimize
therapeutic outcomes [73, 74]. B-catenin knockdown
leads to a significant increase in osteoclast numbers,
driving enhanced bone resorption and substantially re-
ducing bone mass. This process plays a critical role in
the pathogenesis of osteoporosis, as the imbalance be-
tween bone resorption and formation ultimately compro-
mises skeletal integrity [75]. Bone resorption inhibitors
include bisphosphonates, estrogen, calcitonin, selective
estrogen receptor modulators, and Wnt pathway inhibi-
tors. Among these, dickkopf-1 (Dkk-1) is a key antago-
nist of the Wnt signaling pathway and plays a significant
role in bone development and remodeling. Its mecha-
nism involves the inhibition of Wnt signaling through
competitive binding to the B-helix domain of LRP5/6 co-
receptors, which prevents the activation of downstream
signaling cascades. This modulation ultimately influenc-
es the transcription of Wnt target genes, impacting bone
homeostasis by regulating the balance between bone
formation and resorption [76, 77]. Additionally, patients
experiencing disuse bone loss due to prolonged bed rest
showed significantly elevated serum levels of Dkk-1
and diminished B-catenin expression. These changes are
associated with reduced bone formation and increased
bone resorption, highlighting the critical role of Wnt sig-
naling dysregulation in the pathophysiology of bone loss
under such conditions [78]. These studies highlight that
increased Dkk-1 levels can inhibit osteoblast function
and disrupt bone formation. Therefore, targeting Dkk-
1 expression in bone tissue is a promising therapeutic
approach for osteoporosis, aiming to restore the balance
between bone resorption and formation, thereby enhanc-
ing bone health [79, 80].

Skeletal dysplasia is a broad group of genetic disorders
resulting from defects in critical pathways and genes in-
volved in bone growth, differentiation, and mineraliza-
tion. These disorders are characterized by abnormalities
in several essential signaling pathways that play pivotal
roles in bone biology. Key implicated pathways include
Wnt signaling, NOTCH signaling, fibroblast growth fac-
tor signaling, and Hedgehog signaling. These pathways
regulate various cellular processes, such as osteoblast
differentiation, cell cycle regulation, and maintaining the
balance between bone formation and resorption. Disrup-
tions in any of these pathways can lead to a wide range of
disorders with clinical manifestations that vary depend-
ing on the specific genes involved and the severity of
the dysfunction [81-83]. Sclerosteosis and van Buchem
disease are autosomal recessive skeletal dysplasia char-
acterized by a deficiency in sclerostin protein, leading

Nakhaei Amroodi M, et al. Wnt Signaling in Orthopedic Health and Disease. J. Res Orthop Sci. 2023; 10(3):25-134.




August 2023. Volume 10. Number 3

130

to progressive skeletal overgrowth [84]. Sclerosteosis
predominantly manifests among the progeny of Dutch
colonists who arrived in South Africa during the seven-
teenth century. Van Buchem disease predominantly oc-
curs in the Dutch population residing in the Netherlands
[85, 86]. The skeletal features observed in both scleros-
teosis and van Buchem disease share similarities, such as
heightened skull thickening, jawbones, long bones, and
ribs [84, 87, 88]. Although mature osteoblasts produce
sclerostin to some extent, osteocytes are the primary
source of sclerostin [89]. The Wnt/B-catenin signaling
pathway activates osteogenic differentiation and sup-
ports bone formation [90]. Sclerostin, a potent inhibitor
of the Wnt pathway, modulates osteogenic differentia-
tion of precursor cells and impacts bone formation [91].
In contrast, suppression of the Wnt pathway results in
upregulation of receptor activator of nuclear factor-kB
ligand (RANKL) and dysregulation of osteoprotegerin
(OPQG), ultimately leading to the promotion of osteoclas-
togenesis [38]. Investigations into rare bone disorders,
such as sclerosteosis and van Buchem disease, have re-
vealed the critical role of sclerostin in maintaining bone
homeostasis [92]. In cases of sclerostin deficiency, osteo-
cytes lose their ability to regulate new bone deposition
by osteoblasts, akin to a snake without fangs [93]. Since
both conditions arise from genetic mutations resulting in
osteocytic sclerostin deficiency, directing therapeutic in-
terventions toward the osteocyte could represent a prom-
ising approach for treating these diseases.

Conclusion

In conclusion, the Wnt signaling pathway is a pivotal
regulator of numerous facets of musculoskeletal biology,
influencing everything from development and homeo-
stasis to pathological conditions, such as osteoarthritis,
fracture healing, rotator cuff tears, and osteoporosis.
This review highlights the complex interactions between
Wnht signaling and critical cellular processes that govern
bone and joint health, emphasizing its essential role in
maintaining musculoskeletal integrity. Understanding
these mechanisms offers valuable insights into potential
therapeutic strategies for treating musculoskeletal disor-
ders and enhancing tissue repair and regeneration.
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